Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 470: 134231, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38598881

RESUMEN

Fungicides are used worldwide to improve crop yields, but they can affect non-target soil microorganisms which are essential for ecosystem functioning. Microorganisms form complex communities characterized by a myriad of interspecies interactions, yet it remains unclear to what extent non-target microorganisms are indirectly affected by fungicides through biotic interactions with sensitive taxa. To quantify such indirect effects, we fragmented a soil microbial community by filtration to alter biotic interactions and compared the effect of the fungicide hymexazol between fractions in soil microcosms. We postulated that OTUs which are indirectly affected would exhibit a different response to the fungicide across the fragmented communities. We found that hymexazol primarily affected bacterial and fungal communities through indirect effects, which were responsible for more than 75% of the shifts in relative abundance of the dominant microbial OTUs after exposure to an agronomic dose of hymexazol. However, these indirect effects decreased for the bacterial community when hymexazol doses increased. Our results also suggest that N-cycling processes such as ammonia oxidation can be impacted indirectly by fungicide application. This work sheds light on the indirect impact of fungicide exposure on soil microorganisms through biotic interactions, which underscores the need for higher-tier risk assessment. ENVIRONMENTAL IMPLICATION: In this study, we used a novel approach based on the fragmentation of the soil microbial community to determine to which extent fungicide application could indirectly affect fungi and bacteria through biotic interactions. To assess off-target effects of fungicide on soil microorganisms, we selected hymexazol, which is used worldwide to control a variety of fungal plant pathogens, and exposed arable soil to the recommended field rate, as well as to higher rates. Our findings show that at least 75% of hymexazol-impacted microbial OTUs were indirectly affected, therefore emphasizing the importance of tiered risk assessment.


Asunto(s)
Bacterias , Hongos , Fungicidas Industriales , Microbiología del Suelo , Fungicidas Industriales/toxicidad , Fungicidas Industriales/farmacología , Hongos/efectos de los fármacos , Hongos/metabolismo , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Contaminantes del Suelo/toxicidad , Microbiota/efectos de los fármacos , Interacciones Microbianas/efectos de los fármacos
2.
Anticancer Drugs ; 20(2): 149-55, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19209032

RESUMEN

Pancreatic cancer is the fourth leading cause of cancer death in the United States. The prognosis of the disease is very negative, because the cancer will be usually metastasized by the time a patient manifests symptoms. Although combination therapy shows some promise, new drugs to treat the disease are needed. Given our interest in finding new therapies for pancreatic cancer, we sought to determine whether the known cytotoxic activity of the batzellines extended to pancreatic cancer cell lines. The batzellines are pyrroloiminoquinones alkaloids obtained from the deep-water Caribbean sponge Batzella sp (family Esperiopsidae, order Poecilosclerida). We show here that batzellines exhibit selective cytotoxicity towards the pancreatic cancer cell lines AsPC-1, Panc-1, BxPC-3, and MIA PaCa2 compared with the normal African green monkey kidney epithelial cell line Vero. The batzellines cause cytotoxicity by inducing cell cycle arrest that is mediated by their ability to intercalate into DNA and/or inhibit topoisomerase II activity. The cytotoxic abilities of isobatzellines A and C against pancreatic cancer cell lines, their low toxicity against normal cells, and their reported ability to be synthesized makes them interesting compounds with potential chemotherapeutic effects that may merit further research.


Asunto(s)
Alcaloides/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Poríferos/química , Pirroliminoquinonas/farmacología , Alcaloides/toxicidad , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citotoxinas/farmacología , ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Concentración 50 Inhibidora , Sustancias Intercalantes/farmacología , Pirroles/farmacología , Pirroliminoquinonas/toxicidad , Quinolinas/farmacología , Especificidad por Sustrato , Inhibidores de Topoisomerasa II
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...